H(t)=(16t^2)+75t+80

Simple and best practice solution for H(t)=(16t^2)+75t+80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=(16t^2)+75t+80 equation:



(H)=(16H^2)+75H+80
We move all terms to the left:
(H)-((16H^2)+75H+80)=0
We get rid of parentheses
-16H^2+H-75H-80=0
We add all the numbers together, and all the variables
-16H^2-74H-80=0
a = -16; b = -74; c = -80;
Δ = b2-4ac
Δ = -742-4·(-16)·(-80)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-74)-2\sqrt{89}}{2*-16}=\frac{74-2\sqrt{89}}{-32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-74)+2\sqrt{89}}{2*-16}=\frac{74+2\sqrt{89}}{-32} $

See similar equations:

| (3y-1)^2=0 | | x+55+65=180 | | -3.5/1+1/3=k | | 16=12-x/8 | | 4+4a+10=30 | | -36-(x+12)=14 | | -5+y/2=3 | | x-0.25x=18,00 | | 3x=-7+2 | | ¾x+4=¼x+2 | | -2(4x+1)=7 | | x•7=12+3•x | | 4(x+8)=3+1x | | 16x–5=14x+1​ | | 2/3(6x+300=x+5(x+4)-2x | | -6x+4(2x-7)=24-6(2x+4) | | 4+5z=-6z+48 | | -19(n+1)=-57 | | 3.4g+10=1.4g+20 | | -4t+4t=0 | | 75/(x-13)×2=48 | | 4.3(3.4x-19.2)=5.3x+10.7-2.4x | | 70+32+14=r | | m+7=3+m* | | (6x-10)+(x)=180 | | –6y=8−7y | | 10y+6=-10+8y | | x+0.25x=18,00 | | (3x+4x+7)+(19-11-4)=180 | | 8r+15=18r-5 | | -4x+12x=64 | | -2(2p+1)=26 |

Equations solver categories